
Realistic Image Synthesis Assignment 3 - Rendering Fluids

July 31, 2015

Hikaru Ikuta∗

Department of Information Physics and Computing, The University of Tokyo

(a) t = 0 (b) t = 4 (c) t = 10 (d) t = 22

Figure 1: Fluid simulation results.

Abstract

For my final project, I have implemented volume rendering for
heterogeneous participating media to render scenes with realistic
smokes. To generate physically accurate density distributions of
smokes, I have implemented fluid simulations based on the work
by J.Stam [2003].

Keywords: heterogeneous participating media, fluid simulation,
path tracing

1 Introduction

For my final project, I wanted to explore on implementing
computer-generated models to create sophisticated scenes. To this
end, I focused on implementing volume rendering for heteroge-
neous participating media, to render realistic smokes.

1.1 Summary of accomplishments

The major features I have implemented are: (i) Volume rendering
for heterogeneous participating media, and (ii) Fluid simulation.
These features will be explained in detail in this paper.

I have also implemented the following minor features: (i) Path trac-
ing for Lambertian and specular surfaces, (ii) Importance sampler
for image based lighting, and (iii) Texture mapping for Lambertian
surfaces.

Until the previous assignment, I have been working with Kento Ma-
sui, who has implemented the following features: (i) SIMD ray-
triangle intersection, and (ii) Multithread rendering.

1.2 Challenges

The density distribution of the smokes were generated by a fluid
simulator I have implemented based on the work by J.Stam [2003].
The method introduced in [Stam 2003] simulates two dimensional
Newtonian fluids with incompressible flow, as it will be explained
later.

∗e-mail:hikaru ikuta@ipc.i.u-tokyo.ac.jp

For this project, we needed a simulator for three dimensional flu-
ids. Therefore, one main challenge of this project was to construct
a three dimensional fluid simulator, based on the two dimensional
description. A physical understanding of the simulation method
was required to construct a working three dimensional fluid simu-
lator based on their work. Since the [Stam 2003] focused on the
implementation of the algorithm, this was not as straightforward as
mentioned in the paper. In this paper, we will study the physical
and mathematical aspects required to extend the method to a three
dimensional one.

This paper is organized as follows. First, related works of fluid sim-
ulation and volume rendering are introduced. Then, the methods
and simulation settings are described in detail. Finally, the results
of the implementation and the discussion are given.

2 Related Work

2.1 Fluid Simulation

The fluid simulation used in this work uses a model where the fluid
space is divided into meshes, and the fluid is modeled by vector
fields and density fields. Another typical method of fluid simulation
is Smoothed Particle Hydrodynamics (SPH), as in works as [Mller
et al. 2003]. In SPH, fluids are modeled as particles, and smoothing
kernels are used to obtain a continuous representation of the fluid.

One feature of SPH is that it is easy to create a more sophisticated
and accurate model, such as surface tensions in [Mller et al. 2003].
On the other hand, the vector field-based approach by [Stam 2003]
uses a more simple model and is more straightforward to imple-
ment, which is a reason why we used it for our purpose.

2.2 Volume Rendering

The volume rendering algorithm is based on ray marching. Ray
marching is a general method for evaluating values along a ray,
such as line integrals, intersecting implicit surfaces such as fractals
[McGuire 2014], etc. The method used in this project was inspired
by [Delalandre et al. 2010]. Our method uses ray marching to eval-
uate the line integral appearing in the transmittance within partici-
pating media. Other methods of volume rendering include photon



mapping [Jensen and Christensen 1998], virtual ray lights [Novák
et al. 2012]. In these methods, information of emitted lights are
first stored, and the radiance in the scene is then estimated using
the stored information. Among these methods, ray marching is the
most simple and straightforward method, which is why we have
chosen these methods for our project.

3 Methods

3.1 Fluid Simulation

The fluid simulator is based on the Navier-Stokes equations, given
as follows:

∂u

∂t
= −(u · ∇)u+ ν∇2

u+ f (1)

∂ρ

∂t
= −(u · ∇)ρ+ κ∇2ρ+ S, (2)

where u is the velocity, ρ is the density, ν is the viscosity, κ is
the diffusion coefficient, f is the external force, and S is the mass
source. In this implementation, we consider ν and κ as constants,
which describe the properties of the fluid. Fluids where ν can be
considered as a constant is called as Newtonian fluids. Here, u and
ρ fully describes the state of the fluid. The terms f and S can be
used as inputs to control the fluid.

The simulation basically consists of 2 steps: evolution of the den-
sity, and evolution of the velocity. We consider a (N + 2)× (N +
2)× (N +2)-divided mesh, and calculate the time evolution of the
density and velocity field within.

3.1.1 Evolution of Density

The time evolution of fluid density is described by Eq. 2. We will
first observe the second term, which is the diffusion term. Naively
discretizing Eq. 2 with the forward difference operator yields the
difference equation

ρ(t+1)(i, j, k) = ρ(t)(i, j, k) +
∆t

∆x2
κ (

ρ(t)(i+ 1, j, k) + ρ(t)(i− 1, j, k)+

ρ(t)(i, j + 1, k) + ρ(t)(i, j − 1, k)+

ρ(t)(i, j, k + 1) + ρ(t)(i, j, k − 1)

−6ρ(t)(i, j, k)
)

, (3)

where ∆t and ∆x are the time steps and mesh widths, respectively.
Eq. 3 provides an iteration for evolving ρ over time, where the den-
sity of the next step is an explicit function of the previous steps.
However, as it is mentioned in the paper, this algorithm is an un-
stable algorithm, i.e. ρ can diverge depending on the simulation
settings, such as values of N and κ.

The method avoids this by using a backward difference operator for
the discretization, yielding the difference equation

ρ(t)(i, j, k) = ρ(t+1)(i, j, k)−
∆t

∆x2
κ (

ρ(t+1)(i+ 1, j, k) + ρ(t+1)(i− 1, j, k)+

ρ(t+1)(i, j + 1, k) + ρ(t+1)(i, j − 1, k)+

ρ(t+1)(i, j, k + 1) + ρ(t+1)(i, j, k − 1)

−6ρ(t+1)(i, j, k)
)

. (4)

This equation can be interpreted as a system of linear equations

∆t

∆x2

(

∆x2

∆t
+ 6 1 1 1 1 1 1

)





















ρ(t+1)(i, j, k)

ρ(t+1)(i+ 1, j, k)

ρ(t+1)(i− 1, j, k)

ρ(t+1)(i, j + 1, k)

ρ(t+1)(i, j − 1, k)

ρ(t+1)(i, j, k + 1)

ρ(t+1)(i, j, k − 1)





















= ρ(t)(i, j, k). (5)

By collecting this equation for all i, j, and k, we obtain the linear
equation of the form

Aρ
(t+1) = ρ

(t), (6)

where ρ
(t+1) and ρ

(t) are vectors constructed by ”straightening

out” the i, j, k components of ρ(t+1)(i, j, k) and ρ(t)(i, j, k), re-

spectively, into column vectors. Since A and ρ
(t) are known, calcu-

lating the time evolution of diffusion reduces to solving this linear

system of equations for ρ(t+1).

The sparse structure of A can be used for efficient calculation of the
solution. In this method, an iterative method known as the Gauss-
Seidel Method is used, as it will be explained later.

The third term of Eq. 2, S, can be implemented trivially by simply
incrementing ρ by S∆t in each time step. We also will omit the
description of the first term, since it is throughly explained in the
original paper.

3.1.2 Evolution of Velocity

As inicated in the original paper, due to the similarity of Eqs. 1 and
2, evolution of velocity can be done using the exact same formula-
tions as the evolution of density. The difference in the velocity step
is that some transformations are applied to satisfy mass conserva-
tion, for more realistic results. This appears as a preprocessing step
for u in the algorithm.

This step can be explained as follows. We have the assumption that
the flow of the fluid is incompressible, i.e.

∇ · u = 0. (7)

It is known that combined with the Navier-Stokes equations Eqs.
1-2, this is equivalent to the equation

∂ρ

∂t
+ u · ∇ρ = 0, (8)

which is also known as the continuity equation, an equation that
describes mass conservation in a differential form. Therefore, we
have that incompressibility is equivalent to mass conservation.

However, the computed values of the velocity field does not nec-
essarily satisfy Eq. 7, due to computational errors, discretization
errors, etc. The original paper mentions that the violation of mass
conservation hinders the quality of the simulation to a visually rec-
ognizable level. Therefore, we must somehow force the simulation
results to satisfy mass conservation.

In the algorithm, this is accomplished by decomposing the com-
puted velocity field to a mass-conserving part and non-mass-
conserving part, and subtracting the non-mass-conserving part
away from the computed velocity field. In the original paper, it
is mentioned that a result called Hodge decomposition is used.



Let u′ be the computed velocity field, where∇ · u′ := g 6= 0. It is
known that every three dimensional vector field can be decomposed
using a vector potential and a scalar potential. Therefore, there al-
ways exists some vector potential χ and scalar potential φ, such
that u can be decomposed as

u
′ = ∇× χ+∇φ. (9)

By taking the divergence of Eq. 9, we have

∇ · u
′ = ∇ · ∇ × χ+∇2φ, (10)

therefore

g = ∇2φ. (11)

Eq. 11 is known as the Poisson Equation. Suppose that we have
found solved Eq. 11 and found φ. We can then construct a new
velocity field

u
′′ := u

′
−∇φ, (12)

which must satisfy

∇ · u
′′ = ∇ · (u′

−∇φ) = ∇ · (∇× χ) = 0. (13)

Therefore, the new velocity field u
′′ satisfies Eq. 7, ultimately

meaning that it satisfies mass conservation. Therefore, we can use
this transformation from u

′ to u
′′ to force the computed velocity

field to satisfy the mass conservation law.

In the algorithm, this transformation, i.e. solving Eq. 11 and us-
ing Eq. 12 is done before computing the diffusion and advection
terms for the velocity field. The Poisson Equation Eq. 11 is solved
by discretization, which yields a linear system of equations. The
Gauss-Seidel method is used for solving the obtained linear system
of equations, where the sparse structure is used in this case as well.

3.1.3 Gauss-Seidel Method

The Gauss-Seidel Method is an iterative method for solving linear
systems of equations. This method aims to solve the linear system

Ax = b, (14)

where A ∈ R
n×n,x ∈ R

n,b ∈ R
n, n ∈ N. For large coefficient

matrices A, it is generally computationally expensive to calculate
the inverse of A and multiplying it to x, which has a complexity
of O(n3) with simple methods such as Gauss-Jordan elimination.
The Gauss-Seidel Method avoids this computational cost, by ex-
ploiting the structure of the matrix, such as sparsity. This method
only requires O(n2m) time, where m is the number of iterations.

Let aij , xi, bi be the components of A,x, and b, respectively. Let

the tth iteration of xi be x
(t)
i . Then, starting from i = 1, The Gauss-

Seidel Method is then described as Alg. 1. A key characteristic for
this algorithm is that each component can depend on components
of the same time step. Specifically, the first component xt+1

1 only

depends on the previous steps, xk
i , but the second component xt+1

2

depends on xt+1
1 , which is on the same time step. This is expressed

by the summation depending on the index i. Thanks to this fea-
ture, very few memory space is required for the algorithm, since no
copies of x are required for the iteration.

The convergence criteria can be chosen arbitrarily. In this project,
we simply used a fixed number of iterations, specifically 20 itera-
tions, for the convergence criterion.

Algorithm 1 Gauss-Seidel Method

1: while Convergence criteria are not satisfied do
2: for i← 1, 2, · · ·n do

3: x
(t+1)
i ←

(

bi −
∑i−1

j=1 aijx
(t+1)
j −

∑n

j=i+1 aijx
(t)
j

)

/aii

4: end for
5: end while

3.1.4 Simulation Settings

The initial density distribution is shown in Fig. 1 (a). Density was
distributed randomly inside a given rectangular region on the bot-
tom of the fluid space. The initial velocity distribution was given
so that all the voxels in the region had an almost uniform upward
velocity with some fluctuations. The inputs f and S were set to 0 at
all times.

3.2 Volume Rendering

3.2.1 Model Construction

The density distrbution ρ was used for constructing the smoke
model. The smoke is characterized by the distribution of its extinc-
tion coefficient σt and scattering coefficient σs. The relationship
between ρ and σt was given so that ρ serves as a scaling factor of
σt:

σt = ρ/800. (15)

Given σt, we gave σs as

σs = σt/2. (16)

By definition, the relationship σt > σs must hold. This relashon-
ship states that the albedo of the medium is 0.5 for all wavelengths,
giving the medium a gray color when illuminated with white light.

Note that our medium does not emit any radiance.

3.2.2 Distance sampling

For evaluating the transmittance of a given line segment within the
media, our method uses ray marching to evaluate the line integral
in the equation of the transmittance.

To take account of scattering, distance sampling is required to deter-
mine which point the ray was scattered inside the media. Dinstance
sampling was done as shown in Alg. 2. The main idea of this sam-
pling method is to focus on the ratio of radiance that arrives at a
given point, and regard that ratio as the probability of the light be-
ing able to pass that point. To sample distance, we first sample a
random number prob ∈ [0, 1] from a uniform distribution. Then,
we calculate the transmittance T along the ray segment that inter-
sects with the medium. Our distance sampling method then finds
the point where T = prob. If T < prob at all points, we regard
that the ray has passed through the medium.

4 Results and Discussion

4.1 Fluid Simulation

The density distribution obtained by the fluid simulation is shown
in Figs. 1 a-b. The renderer for the simulation was implemented
with OpenGL. Each voxel is assigned with grayscale diffuse colors
and alpha values proportional to the density of the smoke. The
voxels were then rendered with alpha blending, with a red-colored
lighting.



Algorithm 2 Distance Sampling

1: Intersect medium bounding box and ray
2: segment ← intersection line segment of medium bounding

box and ray
3: prob← random([0, 1])
4: S ← 0
5: for p← points along segment do
6: S ← S + σt(p)ds
7: if prob < exp(−S) then
8: return p as the scattering point
9: end if

10: end for
11: (Ray has passed through medium)

4.2 Volume Rendering and Path Tracing

The result of the entire scene is shown in Fig. 3. Notice that the
floor color is shaded upon the teapot, indicating that global illumi-
nation is accomplished by path tracing. The smoke is also rendered
successfully.

Figure 2: The final image, demonstrating the results of volume ren-
dering.

5 Conclusion

The aim for this final assignment was to implement and use
computer-generated models for sophisticated scenes. To this end,
I have successfully implemented volume rendering for heteroge-
neous participating media, based on ray marching and path tracing.
I have also successfully implemented a 3 dimensional fluid simu-
lator, based on the work by J.Stam [2003]. Using the simulator, I
have generated a density distribution of smoke, and finally rendered
a scene containing smokes illuminated with image-based lighting
and point lights.

For future works, photon mapping for enhancing volume rendering
can be considered.

Figure 3: The final image, demonstrating the results of the IBL
importance sampler.

Acknowledgements

I would like to thank Kento Masui, for working together on the
previous assignments, and sharing the excitement of working on
this project. I enjoyed learning C++ techniques, and using them for
accomplishments in this project.

References

DELALANDRE, C., GAUTRON, P., MARVIE, J.-E., AND

FRANÇOIS, G. 2010. Single scattering in heterogenous par-
ticipating media. In ACM SIGGRAPH 2010 Talks, ACM, New
York, NY, USA, SIGGRAPH ’10, 14:1–14:1.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simu-
lation of light transport in scenes with participating media using
photon maps. In Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH ’98, 311–320.

LANDIS, H., 2002. Global illumination in production. ACM SIG-
GRAPH 2002 Course #16 Notes, July.

MCGUIRE, M., 2014. Numerical methods for ray tracing implicitly
defined surfaces. Williams College 2014 Course CS371 Notes,
September.

MLLER, M., CHARYPAR, D., AND GROSS, M., 2003. Particle-
based fluid simulation for interactive applications.

NOVÁK, J., NOWROUZEZAHRAI, D., DACHSBACHER, C., AND

JAROSZ, W. 2012. Virtual ray lights for rendering scenes with
participating media. ACM Trans. Graph. 31, 4 (July), 60:1–
60:11.

STAM, J. 2003. Real-time fluid dynamics for games. Proceedings
of the Game Developer Conference.

WIKIPEDIA. Gauss-seidel method.



WIKIPEDIA. Incompressible flow.


